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The results of the linear theory for the flow of a supersonic relaxing gas past a 
slender body of revolution are analysed in regions where its predictions of 
wavelet position begin to break down. In  this way new variable systems can be 
found which make it possible to discuss the correct nonlinear wave behaviour 
far from the body. The situation depends upon three especially important 
parameters, namely the thickness ratio E of the body, the ratio Sof relaxing-mode 
energy to thermal energy and the ratio h of a relaxation length to a typical body 
length. After establishing general results from the linear theory, the conical body 
is treated in some detail. This makes it possible to demote h as an important 
parameter, although its restoration does prove useful at one point in the analysis, 
and results are derived for shock-wave behaviour when ord 1 2 6 > 0rde4, 
6 = ord e4 and 6 < ord E ~ .  In  the first range of 6 fully dispersed waves are essential, 
although they are fully established only at great distances from the cone; in the 
second range of 6 partly dispersed waves seem to be the most likely to appear, and 
in the third range relaxation effects are second-order modifications of a basically 
frozen-flow field. Practicalsituationsmaywell fall into the first of these categories. 

1. Introduction 
The propagation of disturbances t,hrough a gas can be significantly affected 

by the presence within the gas of a mode of energy storage with a finite, non-zero, 
relaxation time. One-dimensional unsteady and two-dimensional steady con - 
figurations have been studied in the past (a reasonably up-to-date account can 
be found in the book by Clarke & McChesney 1976), but although some early 
work exists on the linear theory of supersonic axialIy symmetric flow, there has 
been no attempt to date to analyse the nonlinear far field of such a flow. An 
interesting study of the shock wave near the nose of a body of revolution has been 
carried out by Chou & Chu (1971) but their method, based on the use of char- 
acteristic parameters, cannot be used to examine the truly distant flow field. 
The probable relevance of relaxation effects to the sonic boom (Hodgson & 
Johannesen 1971) is certainly one reason for re-opening the question of wave 
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propagation through a relaxing gas, and the axisymmetric configuration is basic 
in this case just as it is in the now highly developed analyses of wave propagation 
from real aircraft through non-relaxing, but otherwise real, atmospheres. 

A feature of the vibrational relaxation of atmospheric oxygen and nitrogen is 
the small proportion of the total thermal energy that is contributed by the 
relaxing mode (Hodgson & Johannesen 1971). However, in an axisymmetric 
configuration the geometric attenuation of the disturbance field means that the 
energy of the perturbed gas motion is also exceedingly small far from the body 
and one must therefore not dismiss relaxation effects as simply ‘higher-order 
corrections’; in particular they prove to be of first importance in their effect on 
the very weak shock waves that exist in supersonic flow past a slender body. 
The small relaxing-mode energy means that there is especial interest in a precise 
quantification of smallness, and this is the second new feature of the present 
study. The pioneering work on the small-energy situation is due to Blythe (1969) 
and Ockendon & Spence (1969). Both papers deal with the one-dimensional 
unsteady piston problem, although Blythe makes brief mention of two-dimen- 
sional steady supersonic flow, but both have a very special definition of what 
they mean by small energies. If the amplitude of the gasdynamic disturbance is 
measured by the parameter E ,  their small energies are also O ( E ) .  We shall find that 
tjhe comparable measure in axisymmetric flow is O ( E ~ ) ,  which helps to emphasize 
the wide spectrum of small energies that then lie between 1 and E ~ ,  for example. 
The previous studies are confined explicitly or implicitly to O(1) and/or O(e)  
energies, whereas the present work explicitly includes the whole possible range 
of relaxing-mode energy. The special character of the O(e4) energy level is in no 
way diminished in its importance, but it appears likely that atmospheric relaxa- 
tion energies could fall into the group above this extremely low value. 

For these reasons we must begin with a careful examination of the basic 
linear-theory results, especially in so far as these begin to break down in their 
ability to predict wavelet position. The nature of the breakdown makes it 
possible to suggest the correct variable systems for the proper description of 
nonlinear wave behaviour. This analysis is concluded in $ 3  for smooth, but 
otherwise general, body shapes. The present paper then devotes the remainder 
of its attention to the cone. This helps to simplify matters by diminishing the 
importance of the relaxation length as a parameter in the problem, and focuses 
interest on the role of the relaxing-mode energy level. We hope to report on 
extensions of this work to the case of bodies of finite length in the near future. 

2. Conservation equations 

conveniently expressed in dimensionless form as 
The conservation equations for steady flow of an inviscid relaxing gas can be 

u .vp+pv.u  = 0, (1) 

p(u*V)u+Vp = 0, (2) 

(3) 

A(u.V)q = ~ , , ( c l e - c l ) ,  ( 4 )  

(u-V)p +pa; V .  u +pa; a(u-V) q = 0, 
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where the variables are defined as follows: p is the density measured in units 
of the free-stream density ph; p is the pressure measured in units of pha;;, where 
ai0 is the free-stream frozen sound speed, so that aj0 af is the local frozen sound 
speed; u is the velocity vector divided by aio; q is the non-equilibrium variable 
and qe is its local equilibrium value, both based on the equilibrium free-stream 
value qh; V is the dimensionless gradient operator with lengths measured in units 
of L', a typical body dimension. Of the remaining quantities 

h = 7; U'/L'  ( 5 )  

defines a dimensionless 'relaxation length', with U' the local free-stream speed 
and T; the (constant) relaxation time. We also require 

MfO = U'&, (6) 

the free-stream frozen Mach number, and 

where h i s  the dimensionless enthalpy. Evidently (T is measured in units of l/qh. 

it is possible (see, for example, Clarke & McChesney 1976, p. 184) to write 
It is convenient to use p and s, the entropy, to evaluate qe and we observe that 

to a first order of accuracy. A subscript zero indicates evaluation in the equili- 
brium free stream and T is the dimensionless absolute translational temperature. 
The reference quantities for h, s and T are not important since h, s and T always 
appear in the combinations found in (7) and (8). 

It is also very important to write the conservation equations in a form which 
both identifies and exploits the existence of frozen, or high frequency, wavelets 
or characteristics. Since we are to study the steady-state axisymmetric case it is 
helpful to identity the velocity components u and v along the axial (x) and radial 
( r )  directions respectively and then to define the flow deflexion angle 8, the 
modulus of the velocity vector V and the local frozen Mach angle ,uf as follows: 

8 = tan-1 (w/u), V 2  = u2 + w2, ,uf = sin-1 (a f /V) .  (9) 

The required characteristic forms are then 

D$ p V 2  D$6 cos,uf tan2,uf 
--+p-- + Dx - pf Dx cos(8i,uf) 

and 

We observe that in this special axisymmetric situation V has components 
a/ax and a/&-, while 
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The ratio of the frozen sound speed ai0 in the free stream to the corresponding 
equilibrium sound speed aLo is an important quantity, especially in so far as it 
is a measure of the fraction of the thermal energy of the gas that exists in the 
relaxing mode; it is related to variables already defined by 

ao(aqe/ap)s,o = (a;o/aL)2 - 1 = 8. (14) 
We shall find that 8 and A, defined in ( 5 ) ,  are two of the most important para- 

meters in the problem. A third decisive parameter is the thickness ratio E of the 
body, which appears in the equation for the body's meridian profile, namely 

Y = ~ R ( x ) .  (15) 
The cross-sectional area of the body is equal to e2nR2(x) and since it occurs 
frequently it will be written henceforth as e2X(x). 

The task is now to solve (1)-(4) etc. for the variablesp, p, u, v, p and qe subject 
to the tangency condition 

V ( X ,  eIl(x))  = ER'(x) U ( X ,  ~ R ( x ) ) ,  (16) 
where R' = dR/dx,  and also subject to the condition that the wave system is 
of the downstream-propagating type. Since ai0 > aio (8 > 0) it is only necessary 
to ensure that Mfo > 1 in order to make the equilibrium Mach number 

Me, = 'U'la:, (17) 
greater than one; the system of equations is then unequivocally hyperbolic and 
the wavelike character of the disturbance is guaranteed. Since e < 1 we shall 
seek approximate solutions along the lines of the now classical slender-body 
theory, most especially in so far as we set out to estimate the effects of relaxation 
on Whitham's (1950, 1952) far-field results. 

It is first necessary to establish the solution of the linearized problem in the 
x, r co-ordinate system and since this was done some time ago (Clarke 1961), and 
recently repeated in the more up-to-date language of matched asymptotic 
expansions (Sinai 1975), there is no need to dwell on it here. Briefly, one finds 
that the perturbations of p ,  p, u, v, q and qe are all of the same order in the mid- 
field limit ( E  -+ 0; x, r fixed), and that a velocity potential exists for the first-order 
velocity perturbations. The solution for the potential involves an unknown 
source strength which can be found by applying condition (16) to the near-field 
version of the equations (obtained in the limit as e 3 0 with x and r/e  fixed) and 
then matching with the mid-field result. It transpires that all perturbations of 
p ,  etc., are O(e2) in the mid-field and that the source strength is proportional to 
S'(x) = dS/dx. Details are given in the next section. 

3. Mid-field solution 

be written in the form 
The linear solution in x, r co-ordinates described in the previous section can 

+(x, r ;  e) = +(o)++2+(1)(z, r )  {I + Ole2))), 

+ = {P, P, U, V ,  q, qe}' 

(18) 

(19) 

where +(x, r ;  e )  is a column vector given by 
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and +(O) is its undisturbed, or free-stream, value, i.e. 

Then {@), &), 0, @), &)}' will provide the first-order, linear, perturbation 
solution that we seek. For present purposes it will be sufficient to know the 
solution for u(1), which, if we assume that Nfo is neither transonic nor hypersonic 
in magnitude, can be written as 

+(O) = {P& 1 ,  MfO, 0,1, qT. (20) 

where S" is the second derivative of S, 

P20= M2,,-1, * = e  or f, (34) 
and K O  is a zeroth-order modified Bessel function (defined, for example, in 
Abramowitz & Stegun 1965, p. 374). The integration contour Br for the complex 
variable z is parallel to the imaginary-z axis and lies to the right ofthe singularities 
of the integrand; the latter are a t  z = - ,8:o//3;o A, - l /h ,  0 and - 00. 

We note the definitions and relations 

(Pe0//3#- 1 = b2- 1 = M;08//3~o = 6; 
x = { 1 + S/( 1 + hz)}k 

(25 )  

(26) x can thus be written as 

We also observe that 8 and 6 are of the same order of magnitude. It is clear that 
dl) depends upon the variables x and r and the parameters h and 6 (or 8) as well 
as on the shape of the body via the function 1.9". Of course the Mach number 
Mfo also affects the value of 4) but it has already been presumed to be of proper 
supersonic magnitude and therefore, unlike h and 6, will not be permitted to 
take on extreme values of any kind. 

It is now necessary to investigate the various ways in which the linearized 
solution, exemplified by ( Z l ) ,  fails to predict the true wavelike character of the 
motion. The style and degree of this failure will enable new co-ordinates and 
variables to be defined which correct the deficiencies of the purely linear theory. 
As a first step in this process we must examine the behaviour in two critical 
regions; one is near to the linear wave head, where the failure of the linear theory 
to predict the existence of a shock wave is evident, and the second is far from the 
body (in a sense to be more carefully prescribed below), where the cumulative 
effects of convection and local sound-speed variation are to be anticipated. 

The wave-head behaviour of u(1) is sought under the nominal condition 
c/r I ,  so that some element of 'distance from the body' can be included under 
this heading. The contour Br can be placed sufficiently far along the +Re z axis 
to ensure that IPforzxl is uniformly large; the asymptotic form of KO can then be 
used to show that 

provided that $/Pfo r ,  @/A and r61Jh2 are all much less than unity 
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There is an implication in (27) that r8/A is of order unity, even though 8/A 
may be allowed to become arbitrarily small, for example. If &/A 3 0 with r and c 
fixed (27) becomes 

under the sole condition that c/pf0r < 1 .  Equation (28) is the familiar inert-gas 
result as discussed, for example, by Whitham (1 974, p. 227) and the integral in 
brace brackets is often, called the Whitham function. 

When r8/A is of order unity (27) shows that relaxation effects on wave-head 
behaviour are confined to simple exponential decay with increasing rd/A. Neither 
(27) nor (28) is valid in the limit of zero A. Reasons for choosing either representa- 
tion (27) or representation (28) are given a t  the end of this section. 

It is best to begin the second task, namely examination of the behaviour of 
~ ( 1 )  far from the body, by reverting to the complex-integral form of solution (21). 
This is 

where B”(z) is the Laplace transform of S”, and with the nominal condition 
r 9 1 the asymptotic form of KO can again be employed, but this time so as to 
write (29) in the form 

For the present let us consider the first term in this representation of ,(I). Writing 
it as 

it is evidently possible to express u(l) as the convolution of the two groups of 
terms in brace brackets. Defining the Whitham function 

the first group in (31) is the transform of W’(y ) ,  since W(0) is zero, and (31) 
may therefore be written as 

The upper limit is c - and not x - as a result of the behaviour of the complex 
inner integral. It is now possible to integrate (33) by parts, integrating the 
Y ( y )  term first. This presents us with the necessity to differentiate the complex 
inner integral with respect to y ;  it  is not possible to exchange the operations 

r P 

d/dy and J since the resulting J is not convergent but it is possible to reconcile 
Er Br 
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Br with an open loop contour 9 which surrounds the - Re z axis, and which then 

permits interchanging d/dy and . When all of this is done, (33) becomes 

where 
G(z;pU) = Z b - X I ,  p = (x:-Y)/19for. 

The wave-front result (27) is reproduced in the first term of (34) and evidently 
holds when ( is small in some sense; the precise order of the required smallness 
is more easily comprehended from the direct approach which led to (27) and we 
are now concerned with u(1) when T is made large in a way which will become 
apparent. To this end we must examine 

Of course integrals like 9 have been studied before in connexion with planar- 
supersonic and piston-problem flows (Clarke 1960, 1965) and in quite some 
generality of circumstances by Whitham (1974). However, all of these analyses 
contain an implicit restriction to values of 6 (in the present terminology) which 
are of roughly unit magnitude. We are especially interested in a whole spectrum 
of small values of 6 and a careful re-assessment of the behaviour of 9 is called for. 

Rewriting 9 in the form 

1 
2rih 

9 = -s exp [FB(w; p)]  x-4 dw, 

where 
F =,Bfor/h, B(w;,u) = w @ - x ] ,  X = { I + ~ / ( I + W ) } ~ ,  

we shall employ the method of steepest descents to evaluate the integral on the 
nominal presumption that P % 1. The function a has saddle points at those 
values of w, called wo, for which aG/aw vanishes; evidently 

,u - X(Wo) - wo 2'(Wo) = 0. (37) 
Any wo on the sheet for which Re X > 0 must be real, so that B(wo;,u) is real too. 
Observing from (37) that wo is a function of p it follows that 

dG(wo;p)/dp = w0. 

The stationary value of B at wo = 0 is a maximum, with B(0; b) = 0; the value 
b of p a t  wo = 0 follows from the definitions in (25) and (36). Furthermore, since 
1 < ,u < x/Pf0r,  any relevant wo lies in co > wo > - 1 and B(wo,,u) < 0 every- 
where except a t  wo = 0. 

The steepest path 9' through any saddle point wo can be shown to be 2'-like 
and in fact to be locally parabolic in shape with vertex a t  wo. The integral 9 will 
be proportional to exp [F~(w,;p)]  and hence for any value of ,u other than b it  
must become small when F % 1. This latter statement requires qualification since 
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it  must depend to some degree on the rate a t  which 6!(wo; p )  diminishes from zero 
as p moves away from b. Since this special value of p is clearly significant we are 
led to rewrite 4 as 

1 
4-J exp (p, Fw) exp [F6!(w; b)]  X-4 dw, 

2nih yo 

where 9, is the steepest path through the saddle point of a(w; b) ,  namely the 
origin w = 0, and pe is given by 

pe = ( te -Y ) /P for ,  !ie = X - P e o r -  (39 )  

The real variable t on 9, is usually defined by 

-t2 = 6 ! ( w ; b ) - g ( O ; b )  = & n z ~ ” ( O ; b ) + & w 3 ~ ” ’ ( O ; b ) +  ..., 
and the definition of 6! and X in ( 3 6 )  shows that 

@n)(O; b )  = - nX(n-1) (0) ,  n = 2 , 3 , 4  ,.... 
It is evident that X(n-l)(O) is proportional to 6 for any n 2 2 and since 6 must be 
admitted to be a very small number in many practical situations it is necessary 
to redefine the steepest-path variable as follows: 

- t26 = G(w; b )  = - w2x’(0) - 4w3x”(0)  - . . . . ( 4 0 )  

Evaluating x’(0)) etc., we find that 

w2 3b2+1 
- t 2  = %- (-) w 3 + O ( w 4 ) .  

Inversion of this series gives 

where the upper (lower) sign applies on the upper (lower) half of 9,. It can be 
confirmed that dw/dt is just the t derivative of (42 )  and it is significant that the 
coefficients o f t  in (42 )  are of order unity. Relations (40 )  and ( 4 2 )  can now be 
introduced into (38) and an asymptotic estimate of the behaviour of 4 mn be 
sought under the correct large - 7 condition, which, it is now clear, must be 

8 = Pf,,r6]h 1. (43 )  

It can also be seen that the asymptotic development of ( 3 8 )  is only valid if pe 
is restricted in size. If pe departs too much from zero the saddle point must move 
from the origin; use of (40 )  and ( 4 2 )  in the index of the exponentials in (38 )  
demonstrates that for the origin to be the correct saddle point (peU,lF(3b2+ 1)/4b 
must be much less than 8, and this condition is most concisely expressed in the 
form 

lpella 1 )  ( 4 4 )  

since b is very nearly equal to unity. 
Now (39 )  defines ,ue and since (34 )  requires 0 < y c 5 it  follows that 

ce/Pfor a p e  > - @ - I )  = - S / ( b + l ) .  
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Evidently l,uel/S is not small for Y near to <, and (44) is violated in these regions. 
However, we note two facts: f ist ,  evaluating 9 from (38), (40), (42), etc., gives 

9 - {27r7Sh2}-4 exp [ -,u: 7b/2S], (45) 

and second, l,ue1/6 is at most about 4 for y near to <. Since (43) requires 7s to be 
Gbitrarily large, 9 is exponentially small for y near to f and this behaviour is a t  
least qualitatively correct, as can be seen by consulting the paragraph prior to 
(38). Thus (45) is a proper asymptotic form for 9 throughout the range of y, 
provided that the restriction (43) is met and provided that it is supplemented 
by the correct interpretation of (44), which is clearly 

I<e1/PforS @ 1-  (46) 

1% can also now be shown that the term neglected in going from (30) to (31) is, 
by virtue of the behaviour of 9, negligible if I!$eI/,8for @ 1; this condition is 
implicit in (46) in the present circumstances. Combination of (45) and (34) now 

The upper limit has been written as a3 since this involves neglect of only expo- 
nentially small terms, which is implict in the evaluation of 9 anyway. We 
reiterate that the errors in (47) are O(h/P,,rS) and O(l<el/,dfor6). 

Result (47) is completely analogous to the large-time result for the piston 
problem (Clarke 1965), the interesting fact emerging from (47) that it is the 
Whitham function $K(y) which acts here as the 'piston-velocity input' to the 
perturbation field. It is readily seen that dl) tends to the classical equilibrium 
far-field result for slender-body theory in the limit of zero A. We remark that 
the limit of zero S is properly derived from (28) and not from the present result, 
which requires rS/h 1. 

The interpretation of (47) as a solution of the initial-value problem for a 
one-dimensional diffusion equation is well known and we observe that the 
appropriate diffusivity is pe0 hSb-2. This can be rewritten as .M:o v,/pe0, where 
vL' is the equivalent bulk (kinematic) viscosity measured, in the present example, 
in units of U'L'. Since ,deo and b are of roughly unit magnitude the diffusivity can 
be taken to be of order AS. 

Finally in this section, we reiterate that we have investigated the behaviour 
of the mid-field solution in two regions which will prove to be important because 
of their bearing on the nonlinear wave system. This has been done, first, on the 
presumption that S and h are two parameters which remain fixed under the 
mid-field limiting process, which is E -+ 0 with r,  x fixed and which leads to the 
basic form of the solution in (21) or (29).ISecond, having derived these solutions, 
we should like to propose that both S and h may have independently extreme 
values; for example (28 )  provides the requisite form of dl) when S / h  -+ 0 provided 
that f / r  is suitably small, and (47) gives the correct equilibrium-state form of 
u(1) when h -+ 0 provided that &/rS is properly small. The last proviso helps us to 
make the important point that it is vital to ensure that S is not allowed to become 
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arbitrarily small, like e m ,  n > 0, say, without the most careful attention to the 
details of mid-field behaviour. This is most immediately important in relation 
to results (27) and (28) when it is recognized that exp [ -,8,,r6/2h] = 1 + O(e2) 
for any S/h < ordE2 in the mid-field, where r is fixed, and that the resulting 
‘e20(e2)’ terms in the representation of + [see (IS)] belong in the next and higher- 
order terms like ~4Jr(2); we are essentially concerned with e2+(l) only. The implica- 
tion is that when S/h < ord e2 relaxation effects are properly of second order in 
the mid-field and that (28) must then be used to describe wave-head conditions 
in this part of the flow. 

The role of the far-field solution (47) will emerge as the analysis proceeds. 
Clearly condition (43) can always be met for small enough values of h and we 
must assume a t  this stage that (47) correctlyrepresents u(1) and does not, illegally 
from the point of view of the mid-field solution, contain any elements that should 
be consigned to or higher terms. Some comments on this assumption are 
made at the end of the next section. 

4. The cone 
Although the mid-field results derived in the previous section are valid for 

general smooth body meridian profiles it is both instructive and intrinsically 
interesting to examine the relatively simple case of the right circular cone. In  
that case 8” is equal to 27r everywhere and the Whitham function is simply 

W ( y )  = 2yt. 

Since there is no typical body length L‘ in this case it is best to choose L‘ to be 
U‘7& so that we henceforth write h = 1 in most of this section. This enables us 
to concentrate on the effects of the relaxing-mode energy content, as expressed 
by the quantity 6, or 8, without the additional complication of relaxation-length 
to body-length variations, although we do find it expedient to re-introduce h 
explicitly towards the end of the present analysis. It should be remarked that 
when there is no L’, as is the case with the cone, the definition of a ‘thickness 
ratio’ E must be modified to mean the semi-nose angle of the conical body; (15) 
is just r = ex: in these circumstances. 

4.1. Frozen wa2re head; intermediate energy 

When ord 1 2 S > ord e2 we find from (18)-(20) a,nd (27) that, provided 

and rS is O( l), 
(48) 

near the frozen wave head. It is now necessary to examine the way in which this 
result fails to predict u correctly in these regions. We remark that 5 < 1 implies 
S< < 1.  It is legitimate to take rS as a quantity of order unity here for the reasons 
explained at the end of the previous section which relate to the higher-order 
terms in the mid-field expansion; it also enables us to deal conveniently with the 
order range of S quoted above. 

& < 1 ,  5 < 1  

u = x,, - E22J&l exp [ - Q P f O  V a l  (f;/2P,O ‘14 
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The high-frequency wavelets are located on surfaces given [see (12) and ( 9 ) ]  by 

drldx = tan(O+pf) = (uj-vz) [+uf(uZ-a~)t-uuv]-l, (49a)  

and the mid-field estimates show that 

Observe t’hat, consistent with (18)) etc., af = 1 +e2u)l). The mid-field solution 

We remark that the derivation of (51) is not altogether a trivial matter but, for 
the sake of brevity, we shall confine ourselves to the remark that it depends 
upon finding that the variations in ar with entropy s [note (S)] and with the 
non-equilibrium variable q are negligible compared with the variations due to 
changes in pressure; it is therefore necessary to have (aq,/ap), and (aqe/as), of 
order unity in the limit as e --f 0. 

Equations (49b), (50) and (51) give the approximate form of the shape of 
the high-frequency wavelets for outward-propagating waves, namely 

and this can be rewritten in the form 

We can therefore estimate the wavelet shape to be roughly 

‘gt 2: - e28-t c erf (&pf0 r6) i  + xi, 
where 6 = xo when r = 0, and C is a constant of order unity. But the linear theory 
makes d(/dr = 0, or 64 = xh, so there is an error in the frozen-wavelet location 
of roughly @ - xi M - eZC/&. When this position error in is as large as ( itself 
it is clear that the linear theory has broken down, since it entirely fails to get the 
wavelet positions anywhere near correct, and a revised co-ordinate system must 
be employed; since breakdown occurs when 6 = O(s4/8) with r8 of order unity, 
the new co-ordinates should evidently be 

E = @/&, R = r8 (53) 

u = MfO=$U(”(E, R). (54) 

and the velocity component u should be written as 
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The momentum equations (2) now show that (53) and (54) require 

v = - @pf0 U(1), p = (pJpA ujg) - s4Mf0 U(1). 

qe = 1 + ~ ~ ( a 4 . , / 8 p ) ~ , ~  P I ) ,  P(1) = - lMro U(l), 

(55)  

( 5 6 )  

(57) 

( 5 8 )  

The equilibrium value qe of q will be given by 

and it then follows that q must be written as 

g = I +C%-~&(~)(E, R), 

Q'," = ( aqe/ap)s,o P I ) .  

with &(I) found from the relation 

Equation (58) is valid only when S > ords4 and we also observe that 5 will be 
only o(1) in the region of linear-theory breakdown under this condition. Thus 
(48) will be a proper estimate of the behaviour of u(1) only when Sis large enough 
to  meet this inequality; but we have already insisted that 6 > ords2, so 6 must 
meet the less restrictive condition here. Writing (48) in terms of Z and 3 and 
using the limiting process e -+ 0 with these co-ordinates fixed makes 

N %o-~4{2%oex~ ( -  +PfoR) (@/2PfORe4P} (59) 

in the <, R co-ordinate system. 
We must ensure that U(l)(S, R) in (54) is such as to make that estimate of u 

behave like (59) in the relevant mid-field limit, which in view of (48) andits 
validity conditions must be E-+ 0 with 6 and R (or rS)  fixed. 

The upper-sign version of (10) can be employed to find the equation for U(1). 
To do this it is necessary to use (9), (1 I ) ,  (14) and (49a), as well as all of the results 
(53)-(68). After some elementary manipulations the nonlinear equation 

ZM;, p ~ 1  r,, u(1) up + 2 up + R-I u(1) + pf u(1) = o (60) 

is found and the parametric solution for U(1) is 

U(l) = H(a)exp(-+PfoR)R-4. (61) 

The parameter a is to be found from 

and the functions G(a) and H ( a )  must be chosen so as to satisfy the matching 
requirement set out in (59). 

Equation (62) gives a(%,R) as an implicit function and matching requires 
that we should now write 3 as @/s4 and let e -+ 0 with < and R fixed. Comparing 
(59) and (61), we evidently require H(a)  to behave like - 2Mf0(@/2pf0e4)4 under 
these conditions; (62) shows that under similar conditions 

= C~S-~C-(~(S+CO, R)) + O(e2[*S-*), 

so that G(a(B -+a, R)) must be a6/e4. The latter condition is most simply met 

G ( a )  = as/@. (63) 
by making 
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Then [ = a( 1 + O(sa/S))) in the matching region and 

H(&) = - 2 ~ ~ ~ ( ~ 6 / 2 p ~ ~ ~ 4 ) ~ .  (64) 

The nonlinear solution for u can now be written as 

u = Mfo - ~ ~ 2 M ~ ~ ( a / 2 P ~ , r ) B  exp ( - +pf0r6), 

6 = M: - s2( 2M;, rfo/p;o) (na/6)+ erf (+&, rS)J, 

(65) 

(66) 
where 

and we reiterate that it is valid when ord 1 2 6 > ordG. The range of relaxing- 
mode energies identified by this limitation can be called the intermediate energy 
range. 

When the wavelet shape can be represented by the general formula 

5 = a - f @ )  g ( r )  (67) 

the rule for fitting a weak shock wave into the field can be written (Whitham 
1974, p. 334) as 

6s = a1 -f(a1) g(yJ = a2 -f(az) g(rs) ,  (68) 

where a subscripts denotes a value on the shock surface and a1 and a2 are wavelets 
running into the shock wave from upstream and downstream positions res- 
pectively. We are of course only concerned with a head, or bow, shock in the 
present situation, so that (69) simplifies to 

2 /;f(Y) dY = f"%) 9 P s ) .  (70) 

Comparing (66) and (67) it follows that a2 and r, are related by 

and that the shock wave therefore lies where (see figure 1) 

Since this shock wave must be a Rankine-Hugoniot discontinuity across 
which q is frozen at  its free-stream value of unity it is necessary to ensure that 
&(l) in (57) is zero just behind the surface given by (72). This condition must 
therefore be used when &(l) is found from (58). The first-order estimates of u, 
v, p ,  etc., can be found from (55) and (56) in conjunction with (65); values 
immediately behind the shock must make use of (71) to identify this special 
location. 

Equation (72) shows that near the nose of the body, where r, 3 0, the shock is 
a right circular cone whose shape is exactly that of a fully frozen-flow wave 
(e.g. Whitham 1974, p. 335). 
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/ 

wave : equation (122) 

wave : equation (72) 

E 

FIQURE 1. A sketch of the shock-wave system for ord 1 3 S > ord 8, namely intermediate 
and small-intermediate relaxing-mode energy levels (see $5 4.1 and 4.2). The partly dispersed 
wave has had its axial distance from the frozen free-stream Mach cone E = 0 greatly 
exaggerated so as to convey some impression of itsshape; the true distance should be 
about -& of that depicted here when e - 10-I. If r N A/& is one unit of radius the fully 
dispersed shock should appear in its substantially evolved form not at about 3 units of 
r as depicted, but at about 3(S/6')2 units; e.g. if S = and 6 N lo-' this is about 300 units. 
The axial location of the fully dispersed wave is uncertain within a distance of order A .  
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4.2. Frozen wave head; small intermediate energy 

If 6 < ord e2 we must use (28) to give 

u = MfO - E22Mf0(E/2PfO (73) 
provided that E/r << 1.  

Following the same arguments regarding wavelet location as were used in 
0 4.1 one readily Gnds that linear theory breaks down when 5 M 6”/ in the present 
case. Thus the requisite rescaling of co-ordinates is revealed for the ratio E/r, 
but one must decide how to arrange for the stretching of 6 and r separately. 
We note first that the nonlinear wave-head value for u must be precisely that in 
(54) and it soon follows from the conservation equations that all of the results 
in (55)-(58) are correct, provided that E and R in U(l) (E ,R)  are exactly as in 
(53), and provided that 6 > ordE4. The results in (60)-(62) are likewise valid 
here and the only difference arises from the necessity of matching these results 
with (73) rather than (48). Writing (73) in terms of B and R and using the limit 
process E + 0 with B and R fixed makes 

u - Mfo N - ~~2Mf~(B/2Pf, R)i  = - ~ ~ 2 M ~ ~ ( ~ l t 2 p r ,  r ~ ~ ) 4  

where the last form follows when the result is expressed in mid-field co-ordinates 
5 and r (N.B. not [ and R as in 4 4.1). It quickly follows that matching makes H 
and G exactly as in (63) and (64), and all the subsequent results of 4 4.1 are valid 
in the present case, for which ord@ 2 S > orde4. 

The fact that the present far-field behaviour is identical with the previous 
case, for which ord 1 2 6 > ords2, is not entirely trivial since relaxation effects 
are negligible in the present mid-field and are not negligible in the previous, 
larger-energy, situation. 

In  the whole energy spectrum ord 1 2 S > ords4 we can now say that as rs 
increases the shock bends back towards a free-stream frozen-Mach-cone shape 
and its strength diminishes in proportion to E-4 erf 3 4  exp ( - R), where 

Since h = i in the present section, r is measured in units of the 
relaxation length but it is important to observe that significant relaxation 
attenuation, which is present when 3 2 1, say, may well appear only after many 
multiples of this length since the smallness of S is only restricted by 6 > orde4. 
For example, if 6 = €3 and E = 10-1, r must be of the order of lo3 relaxation lengths 
for noticeable shock attenuation to appear (see figure 1). 

A very similar result to (72) has been given by Chou & Chu (1971) for the nose 
shock shape on a general axisymmetric body when, as they put it, “the decay 
length is of the same order as a typical length scale of the projectile.” Translated 
into our terminology this limitation is equivalent to taking S = 1, so that (72) 
extends Chou & Chu’s resuIt in an important way at the expense, so far, of 
restriction to a conical body. We comment that their method (of characteristic 
parameters) is very different from ours and cannot be extended to encompass 
other far-field behaviour, as can the present technique. 

= ? 

33 F L M  79 
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4.3.  Frozen wave head; small energy 
In  the special situation in which 6 = ordE4 i t  is necessary to use (73) for the 
mid-field when </r  < 1.  As in $4 .2 ,  the nonlinear far field must exist when 

M ~ 4 r  and E and R prove to be the correct co-ordinates in this domain. It is 
worth noting that, with 6 = Ae4, E is equal to A t  and R is equal to Are4; A is of 
course an O(1) constant. Results (54)-(56) also apply in this case, as indeed 
does (57), which is repeated here in its special form 

(74) q = 1 + ~4~4-'@1)(E, R) 

to draw attention to the fact that variations in q are now of the same order as 
t,hose in q, [see (%)I. Unlike the two previous cases the wave-head region is not 
nearly frozen and this is further exemplified by the fact that (58) must be replaced 
by 

It follows that the 'source' term W in (lo), which is proportional to QE), is now 
quite different from its form in the intermediate and small intermediate energy 
situations. The equation satisfied by U(1) is no longer (60) but has the less tractable 
form 

Equation (76) describes a cylindrically symmetric type of flow which is exactly 
analogous to the small-energy piston-problem motion discussed by Blythe 
(1969) and Ockendon & Spence (1969). Blythe includes steady two-dimensional 
supersonic flow in his analysis, which can therefore be used to describe the flow 
past a wedge. If the wedge is of thickness ratio 6 Blythe's small energy level 
requires 6 to be O(e), so the contrast with the present small energy level, which 
makes S equal to O(e4) for a cone of thickness ratio B ,  is significant. 

There are apparently no simple analytical solutions of (76), as there are of 
(60), but some useful pointers to the general nature of its solutions can be found 
by studying its characteristic form. In this we follow Blythe's approach to the 
piston problem, but although the technique is the same, the changed geometry 
here makes the results somewhat different. 

First, defining w = w(Z,GY) via 

w = (2*Mjo//3jo A)  rfo R*U(l), Z = E/A, GY = (ibf0 R)$, (77) 

it  transpires that w satisfies a parameter-free equation, namely 

(w,+ 2ww,),+ w, + (22-0 +GY) w, = 0, (78) 

whose characteristics are GY = constant and 01 = constant, where a is defined by 
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Transforming to independent variables a and 9Y in place of X and C?l and using 
(78) and (79) gives the following equation for X = %(a, Y): 

Since 
Xagg +Xu%,, + 29YXug = 0. 

u = M,, + €4 U(l)(Z, R )  

{R*U(l)(E, R)}&, --f - 2Mf0(E/2/3,,)4, 

(80) 

must match with the mid-field result for ords2 2 6, namely (73), it is necessary 
to make 

(81) 

so that (77) and (79) give 

W(X, 0) = - 4~x4, K = 4~;, r,o/p;oA*, (82) 

when 3 2 0. Since w(X,  0) = 0 for X < 0, w is continuous on Y = 0; the simplest 
solution of (79), which identifies a with F on Y = 0, is therefore 

9- = a + 2 w(X,  s) ds. (83) SI 
Hence (82) translates into the condition 

I a 2 0, 
a < 0, (84) 

on X, supplemented by 

%(a < 0,9Y) = a, %(a, OL.= a. (85L (86) 

Thus a = 0 is the wave head, downstream of which*-Kg, or w, diminishes from 
zero to negative values, at least locally; the physical process is one of compression. 

For a near to zero X can be written as a series: 

X = 2 "*"%"(Y), a 2 0, (87) 

T;+29YX; = 0, -Kl(0) = 0, Xi(0)  = - K ,  (88) 

x;+29YX;++X15y = 0, X*(O) = 1, X";;O) = 0, (89) 

n=l 
where 

and similarly for Xn,  n 2 3. Equations (88) and (89) give 

X l  = - & d K  erf Y, ( 90) 

so that when a is small an estimate of the shape of a high-frequency characteristic 
is provided by the approximation 

(92) X =  = / A  = t=-&(m)*KerfY+a(l+A(9Y))+ .... 

Equation (92) is valid for a 2 0; when a < 0, (86) must be used. This is not in the 
general form (67), for which the shock-fitting formulae (68) and (69) apply, but 

33-2 
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a modified result which applies especially to (92) and a bow shock wave can be 
found as follows; 

(93) f = “1 = “,(I+ 4 9 s ) )  -f(”z) Y(rs), 

- s(r,)f2(a2) + 2 p w  ds + “zf@z) 4 g S )  + /Ca(W) [f(s) - sf’(4l ds = 0. 
0 0 

(94) 

Noting that (77) and the special definition of R, namely A@r, make 

g = (+As4Pfor)4, t 95) 

it is readily seen from (93) and (94) that the shock-wave shape is identical with 
the result in (72), provided that 6 in that equation is replaced by As4 and provided 
that A(%) i s  zero. Manifestly A(%) is not zero and (91) shows that it is a rather 
awkward function of 9 which may, however, be approximated by 

(96) 
when GY is small. 

It is clearly not possible to solve (94) for a2 as a function of g, in any simple 
manner, on account of the h a 1  integral there, but it is possible to estimate the 
effect of A on shock shape by using a mean-value theorem on the integral to give 
[N.B.f(cc,) = at, g(rs) = +nBKerf 9,] 

A(%’) 2: &K2g4 = &/3f20K2(A&)2 

-s(rs) + “S (g + N g S )  + +A(q?)}  = 0, (97) 

where 0 < @, < 3Y8. It follows that the shape of the shock is given approximately 

( 98) 
by 

6s 2! -Ag2(r,) ((1 +A(%) (1 +$AW.J 

which indicates that although i t  starts at the apex of the cone as a frozen conical 
shock, as in (72) with 6 = As4, its actual shape develops in a rather complicated 
way with increasing r, (see figure 2). 

We must recall the limitations inherent in (97) and (98), which require a2 
and hence g2(rs) to be small; the implication is that g, oc s2r:A* must be small 
and, via (96), that the effects of A(%) on shock shape are themselves small. 
For example one may suggest as a reasonable guide that the present small-energy 
shock shape is adequately approximated by (72) with 6 =  As4 for any 
Ar, =g c4. 

The manner in which the small-energy solution continues for larger values of r 
cannot be described analytically, so far as we have been able to  discover at 
present. It is possible to adapt Blythe’s (1969) analysis to consider the situation 
in the neighbourhood of some value a0 ( > 0) of a and so indeed to show that a 
discontinuous frozen Rankine-Hugoniot shock must persist to arbitrarily large 
radii from the nose of the cone. It is however not possible to prove whether this 
shock eventually evolves into one which decays in the manner described in 
9 4.2 for intermediate energies, or whether, as physical intuition would suggest, 
it will behave roughly in this way for ‘small’ cone angles s, but will persist as 
a shock of asymptotically constant strength when the cone angle is ‘large’ 
enough. 
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Partly dispersed wave; 
equation (101) with 
B [see (102)] > 0 

Partly dispersed wave: 

6 

FIGURE 2. The shock wave for small relaxing-mode energy, 13 = ord 12 (see 5 4.3). The part 
of the wave sketched according to the result in (98) should have its axial distance from 
6 = 0 reduced to about &, of the distance depicted, as for figure 1, when E N 10-l. The 
intermediate-energy result (72) is shown for comparison; the small-energy shock wave is 
more nearly a right circular cone than is the intermediate-energy wave. The shape of 
the wave in r < h/e4 is necessarily rather speculative (see $4.3) as is its axial location 
for r > A/@. 

Some evidence that only partly dispersed shocks exist in the present small- 
energy case can be adduced by seeking what we might describe as a ‘fully 
evolved ’ solution of (76), which is conveniently expressed in the form 

U ~ E ,  R)  = - (p7 , /2~? ,  rfo) V(E  + p f 0 m ) ,  (99) 

where B is a constant and we recognize that U(1) is most likely to be negative in 
this compressive situation. Substitution of (99) into (76) shows that U(l) will 
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only depend upon the single ‘evolved ’ conical co-ordinate E+pf0BR in an 
approximate, asymptotic, manner as pf0 R-tm. If  we ignore the term 

in this limit we find that V satisfies the equation 

( VV’ - 2B V’)’ + A-1 VV’ - (2B/A + 1) V’ = 0, (100) 

approximately. Since V and V’ can reasonably be supposed to vanish simult- 
aneously, (100) yields the velocity variation 

2Bln V+2(B+A) In{2(2B+A) - V> = - (2B/A + 1) (E +pfoBR) +C, (101) 

where C is a constant. 
Consistent with the view that (101) represents a compression wave, 2(2B + A )  

will be assumed to exceed zero, i.e. B > - +A; there are then two cases to con- 
sider. When 0 > B > -&A, V+O as 8+pfoBR-+-m and V72(2B+A) when 
E +pfo  BR++m; the wave structure is continuous, indeed fully dispersed, and 
the wave inclination is, properly, downstream of the undisturbed frozen char- 
acteristics. When B > 0, V+2(2B+A) correctly as E+pf,BR++m, but 
V -+ 0 for the same positive value of the conical co-ordinate; since the solution 
( 10 1) is therefore two-valued in these circumstances a frozen Rankine-Hugoniot 
shock must be fitted to the front of the wave system and a partly dispersed 
wave results; we note that when B > 0 the wave described by (101) is inclined 
upstream of a frozen free-stream characteristic as we should expect for a partly 
dispersed wave. 

We may anticipate that in regions where R is large [see prior to (loo)] the 
motion is substantially in an equilibrium state. Hypothesizing that the waves 
described in the previous paragraph exist a t  the head of this equilibrium ‘core’, 
it is reasonable to equate the final value of 2(2B+A) for V with the relevant 
equilibrium velocity perturbation immediabely downstream of an equilibrium 
conical shock, namely 

- 3M% Mfo reo/Pe20. 
Recalling the definition of V in (99) we can now find the quantity B from the 
relation 

- ( P f o / 2 W o  Fro) W B  + A ) )  = - 3E0J!f0 reo/P%. 
When 6 = 0rde4 the subscript-e and subscript-f values do not differ markedly 
and we can therefore write 

B 21 +{(3Mj0 r?o/P?o) - A ) .  (102) 

For any acceptable supersonic stream it is clear that A will have to be numeric- 
ally very large to make B < 0 and we infer that when S = orde4 the bow shock 
is likely to be always partly dispersed (see figure 2). The reason lies in the fact 
that in the present case 6 is made to diminish with diminishing E ;  for a fixed 8, 
reduction of e must eventually lead to an intermediate-energy type of situation, 
where, as we shall see, fully dispersed waves are essential, the precursor shock 
having decayed exponentially as described in the previous subsections. 
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4.4. Frozen wave head; very small energy 

When 6 < ords4 the relaxing-mode energy is very small and it now becomes 
necessary to replace (74) and (75)  by 

q = 1 + E~&(~’(E, R)  (103) 

and &(l) = (%e/aP)s,ofl’) ,  (104) 

with E = 6 and R = 6%. The source term W now contributes a negligible amount, 
of relative order (a  > 0) if S = O(e4+a), to (lo), which therefore reduces to the 
simple statement that 

(105) 

The velocity u is again given by (54), and (105) describes a fully frozen flow; 
U(1) is easily found and (56) and (104) enable one to calculate the perturbation 
to the non-equilibrium variable. Relaxation is relegated to the role of a higher- 
order perturbation to a basic frozen flow. We shall not pursue this caseany 
further. 

4.5. Equilibrium wave head 

The analysis so far has concentrated on the wave motion in regions where rS, 
for 6 2 ord €4, or re4, for S < ord €4, is O( 1). When rS is large the mid-field estimates 
(27)  or (28) are no longer appropriate and we must turn to (47) for relevant 
information. 

Recalling that we are discussing the cone, so that ’YY(y) = 2y* and h = 1, (47) 
can be put in the form 

2 U$) + R-I U(l )  + 2 Myo I?,, U(l)  U 3 (1’ = 0. 

where Q = te/(2PeorSb-2)+- (107) 

Evidently the low-frequency wavelets are now important. Their location can 
be found from (49a)  with the subscriptfreplaced throughout by the subscript e .  
Subsequent algebra follows (49 b)-(52) very closely, with only minor changes to 
allow for appropriate equilibrium relations. It is found that the relevant equi- 
librium wavelet is given by 

and since (106) shows that u(l) behaves like (S/r)* for any fixed (such as zero) 
one readily concludes that the equilibrium wavelet shapeis te - constant cc e2S*ra. 
Since the linear-theory wavelet would be 5, = constant it follows that the 
accumulating error in the mid-field theory is of order s26*&, which is unaccept- 
ably bad when it is of the order of te itself. To reconcile the two estimates, 
te M e2Sb* and tz z rS (in order to keep Q fixed), it is necessary to have r z S/@ 
and i5, M 8/64, so that the new co-ordinates E, and Re are defined by 

9, = tee4/&, Re = res/&. (108) 
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The dependent variables must be written as 

J .  P. Clarke and Y .  L. 8inai 

u = Mf0+e4UL1)(Ze, Re), 

P = ( P ; / P ~ #  - c4MfO UL’), 

v = -64  P e o  UZ,”, 
qe = 1 + .4(aqe/ap)s,o ( - M&, UL”) = 1 + &QLp’. 
q = 1 + 64Q‘l’ N 1 + 64&$1), 

(112) 

(113) 

and we note q = q,, to first order, provided that 6 > ord e4. The difference q - qe 
is more important than q or qe separately in this near-equilibrium situation and 
it is therefore expedient to define 

q-qe = q = &3&1@). (114) 

It follows from (1  12)-( 114) that the relaxation equation (4) becomes 

It is now possible to evaluate the quantities pa; and c in (3) at the local 
equilibrium state defined by (1 13) in the knowledge that the relative error in so 
doing is, from (114), 0(@/6). It follows, using the local as opposed to the free- 
stream version of (14), that (3) can now be rewritten in the form 

(u * V) p +pat V . u +pa,“ ae(u - V) q CI: 0 (116) 

with the same relative error; a, is the local (i.e. variable) equilibrium sound 
speed and it is necessary to use (8) to show that no terms involving entropy 
variations appear. Substitution of (116) for (3) in the set of equations (1)-(4) 
makes it expedient to treat these equations as if the characteristics were based 
on a, and not af.  The result is a pair of equations identical with (10) in every way 
except for the replacement of the subscript f by the subscript e and replacement 
of W ,  defined in (1 1), by 

The necessity of following local changes in the equilibrium sound speed intro- 
duces re, defined in the same way as Ff in (52) except that q = qe during the 
differentiation instead of being held a t  a constant value. 

Making use of all the foregoing results, and after a little algebra, it is found 
that UL’) satisfies the following axisymmetric form of Burgers’ equation : 

W, = pa:ce(u.V)g. (117) 

In reiterating that ( 1  18) is valid only when 6 > ord €4 we observe that the errors 
in (47), on which the derivation of (118) depends, are O ( E ? / ~ ~ ~ S ~ R , )  and 

W e  ~ ~ / I p r ,  Re 6) 
and so are negligible in the new co-ordinate system only when 6 obeys the above 
restriction. Since (47) will provide a boundary condition for UL’) in (118) by 
matching, these observations are important. 
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It is useful to note that (106) can be evaluated in terms of the parabolic 
cylinder function %( 1, - 24Q) defined by Abramowitz & Stegun (1965, p. 687). 
The result is 

U(')(& r )  = - #J& - exp ( - 3Cf) @(I, - 2'Q), (119) (E;)t 
and it follows that ( 118) must be solved subject to the condition that U:') behaves 
like 

as Re+ 0 with Ee/Rk fixed. 
The axisymmetric Burgers equation does not appear to possess an equivalent 

to the linearizing Cole-Hopf transformation, which reduces the planar version 
to a related diffusion equation. This transformation has been used by Parker 
(1975, private communication) to produce an equation which has the nonlinearity 
transferred to a different type of term and which permitted him to use a sub- 
sequent linearization. The need to match the solution of (1 18) with the mid-field 
result unfortunately invalidates this procedure in the present case (Sinai 1975). 
Chong & Sirovich (1973) have mentioned a similarity transformation of ( 1  18); 
the equation can be used to describe flow past shapes more general than the cone 
and it has been shown that there is a body of general ogival shape which supports 
the similarity field; it  has a blunted nose and so, strictly, violates the basic 
slender-body hypothesis, but the blunting is slight and the solution, which is 
fully discussed elsewhere (Sinai 1976), may well be useful. 

The difficult task of finding a solution of (1  18) subject to condition (120) 
means that it is worth looking at special situations such, for example, as the 
analogue of the 'fully evolved' solution of 5 4.3. Writing 

Uil)(Ee, Re) = - V(Ee + Be Re), (121) 

rather as in (99), we fmd, first, that (121) is valid only if V/Re is negligible and, 
second, that 

(122) 

Clearly E, + Be Re + T 03 as V -+ 0 and as V -+ 2Be M,, Peo/reo H:o, respectively; 
joining the compression-wave solution to a downstream equilibrium flow, as in 
8 4.3, makes Be equal to 3Mz0 l?~0/2~e30 and the wave is evidently essentially fully 
dispersed (see figure 1) .  

Of course we have not proved that the compression wave far from the cone 
evolves into the form ( 1 2 2 ) .  Some further evidence in favour of the view that 
this is the case comes from the fact that when Ee/R8 is large and positive the 
asymptotic form for @makes the matching condition (120) read 

(/3j0/2BePe0) In { V (  V - 2BeHf0Pe0/~e0N~0)-1] = E, +Be Re + constant. 

- J&d2~e/PeoRe)'. (123) 

This is the proper matching condition for the full equilibrium flow past a cone, 
which ultimately leads to the value of Be quoted in the previous paragraph. 
Since it will be an equilibrium characteristic 'far downstream' from the nose of 
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the cone (i.e. ‘far’ in the sense that Sell@ 9 1 in this case) that intersects the 
rear of the bow compression wave, the evidence in favour of the fully dispersed 
wave (122) is improved. 

It must be remembered that all lengths in the cone problem are measured in 
units of the relaxation length, so that ‘far’ means distant in terms of this parti- 
cular measure. It is of course possible to revert to the general form of (47) and 
so to restore h as a parameter which may take on various extreme magnitudes, 
always subject to preservation of the errors inherent in (47) as small numbers. 
This can be done for the particular result (106) for the cone by replacing S by 
ha in both (106) and (107) and hence also in ( 1  19). A formal use of the limit 
h -+ 0 with all other quantities fixed then shows that dl) is exponentially small 

The near-equilibrium character of the flow is evident from the first term in (124) 
and the linear mid-field theory breaks down in respect of its prediction of wavelet 
position when ge/r = O(@) (the situation is analogous to the one discussed in 
$4.2 for near-frozen conditions). If (124) is to be a valid representation of dl) 
in regions where ce/r = O(e4) the restriction < 1,  which must be met by (47) 
in general, requires S > ord8  and it is only necessary to ensure that rS/h 9 1 
and, for validity of the asymptotic form (124), &/(rhS)4 9 1. If te is O(S/e4) and 
r is therefore O(S/S) ,  it is easily shown that the required conditions are met if 
h = O ( E ~ ) ,  n > 0. This means that, with h restored as an explicit (small) para- 
meter in the problem, we should again use co-ordinates (108) to describe the 
nonlinear wave behaviour; (log)-( 113) are similarly valid in the new situation, 
but (1  14) must be modified to read 

q - q  = q = he:s@lQ(l) (125) 

with the net result that U p )  now satisfies (118) modified to the extent that h 
multiplies the double Ee derivative on the right-hand side. 

If we define W = Ri Up’, (126) 

l i e  = r e 0  J C o / M f o P e o ,  Ce = P ! o / 2 P e o ,  (127) 

(128) 

then W satisfies the equation 

K,  R14 WEe + WEe = hCe Kse, 
subject to the condition 

A+ ... P e o  Re bV2 

as Re --f 0 with Ee/Rt fixed. 
If A is a new variable, defined such that 

(aEe/aRe)A = KeR,i W ,  

(1  28) can be rewritten in the form 
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Since h = O ( P ) ,  n > 0, is essentially small a solution of (131) is sought in the form 

w = W(l)+hW@)+ ... . (132) 
The solution for Wc1) is 

where the arbitrary function of A appearing in the integral of (130) has been set 
equal to A .  We observe that A -+ Ee under the matching condition quoted after 
(129). It is not difficult to continue with the evaluation of W by calculating W(2) 
and thus, via ( 1  30), to find a revised relation between Ee, Re and A ,  but we shall 
not continue with this exercise here beyond making the point that the second 
term in W can be shown to behave like the second term in (129), as it must. 

Solution (133) is multi-valued in the physical, Ee, Re plane, and requires the 
introduction of a shock wave at  the head of the flow field. Since (133) is like (67), 
the shock-fitting rules (68) and (69) can be used to show that this shock must 
be conical, with vertex a t  the vertex of the body in the present limit of vanishing 
A. The implication is that hCe WSeEe is indeterminate a t  the shock wave, the 
problem is evidently of the singular perturbation variety, and the approximation 
must be corrected to account for this. The conical shock can be shown to lie 
along %' = 0, where 

and we note in passing the correspondence with the 'evolved' solution (121) and 
(122). Changing to co-ordinates E' and Re and stretching 8' by the factor I/;\ 
converts (128) into an equation whose solution is precisely (122) with the right- 
hand side divided by A, provided that terms in h/Re are negligible. The validity 
of the W(l) solution depends on h W(2) being satisfactorily negligible and some 
idea of the criterion for this can be seen in (129); with Ze near to the shock wave, 
A/Re < 1 proves once again to be the correct condition and it appears that the 
fully dispersed wave should be more-or-less fully established when Re is, say, 
10h. Recalling the definition of Re from (108), this requires r/h to be lo&-*. 
Thus, writing 6 = O ( E ~ - ~ ) ,  m > 0, it is clear that the development distance for the 
fully dispersed wave will be very large in units of the relaxation length, even 
when the relaxing-mode energy is small, i.e. m 3 0 (see figure 1) .  

The introduction of h as an explicit parameter has made it possible to check 
the validity of (121) and (122) but, more important, it  also shows how to improve 
on these estimates via calculation of W@), etc. So far we have only the single 
restriction h = O ( E ~ ) ,  n > 0; the asymptotic mid-field solution (124) shows that 
if h < ordE2 the second term becomes so small that it must be included with the 
second-order [O(e4)] mid-field terms. The near-equilibrium relaxation processes 
then appear as higher-order modifications to a basically equilibrium background 
flow. The far-field nonlinear wave region will still include first-order relaxation 
effects unless h < orde4, when they will again be demoted to second-order 
importance. The characteristic length L' for a cone is of course an artificial 
parameter, so that it is always possible to arrange for h to lie in the interval 
between 1 and e2. This means that we are arbitrarily selecting regions of the flow 
where relaxation effects are important. When the body has a dehitevalue of L' 
we shall no longer be permitted t,he luxury of choosing A. 

r ,= "' 8, + 3MIfo Re/2p,2,, (134) 
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5. Conclusion 
A list of the main conclusions from the present work must include the following. 
The general linear mid-field behaviour in regions where its predictions begin 

to break down has been established, together with the important error bounds. 
For the flow past a cone the asymptotic ( r  +-a) shock-wave structure is known 

when E ,  6 and M, are given, but in order to trace its evolution it is necessary to 
distinguish between three separate relaxing-mode energy levels. When 6 < ord e4 
relaxation becomes an essentially higher-order effect. When ord 1 2 6 > ordd  
the wave head is a frozen Rankine-Hugoniot shock, whose shape is given by 
(72), provided that r/h 5 1/6; when r/h B 1/13 the main compression front is 
essentially fully dispersed, but the evidence is that the wave is not fully established 
until r/h 9 S c 8 ;  this is a large number of relaxation lengths, even when the 
energy level 6 is small. When 6 = ord e4 the wave head is again a frozen Rankine- 
Hugoniot shock whose shape is given reasonably well by (72) when r/h < ord s - ~ .  
For larger r/h the evidence favours persistence of this situation in the form of a 
partly dispersed wave; a fully dispersed wave is unlikely. 

The weakness of far-field disturbances makes it quite probable that S will 
exceed ord e4 in practical situations. Figures 1 and 2 illustrate the features 
mentioned above. 
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